Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Sci Rep ; 13(1): 9264, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20245092

ABSTRACT

The objective of this study was to clarify the impact of adverse reactions on immune dynamics. We investigated the pattern of systemic adverse reactions after the second and third coronavirus disease 2019 (COVID-19) vaccinations and their relationship with immunoglobulin G against severe acute respiratory syndrome coronavirus 2 spike 1 protein titers, neutralizing antibody levels, peak cellular responses, and the rate of decrease after the third vaccination in a large-scale community-based cohort in Japan. Participants who received a third vaccination with BNT162b2 (Pfizer/BioNTech) or mRNA-1273 (Moderna), had two blood samples, had not had COVID-19, and had information on adverse reactions after the second and third vaccinations (n = 2198) were enrolled. We collected data on sex, age, adverse reactions, comorbidities, and daily medicine using a questionnaire survey. Participants with many systemic adverse reactions after the second and third vaccinations had significantly higher humoral and cellular immunity in the peak phase. Participants with multiple systemic adverse reactions after the third vaccination had small changes in the geometric values of humoral immunity and had the largest geometric mean of cellar immunity in the decay phase. Systemic adverse reactions after the third vaccination helped achieve high peak values and maintain humoral and cellular immunity. This information may help promote uptake of a third vaccination, even among those who hesitate due to adverse reactions.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Antibodies, Viral , BNT162 Vaccine/adverse effects , Complementary Therapies , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , Vaccination/adverse effects
2.
Vaccines (Basel) ; 11(5)2023 Apr 29.
Article in English | MEDLINE | ID: covidwho-20243620

ABSTRACT

Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.

3.
NPJ Vaccines ; 8(1): 33, 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2284970

ABSTRACT

Tools that can be used to estimate antibody waning following COVID-19 vaccinations can facilitate an understanding of the current immune status of the population. In this study, a two-compartment-based mathematical model is formulated to describe the dynamics of the anti-SARS-CoV-2 antibody in healthy adults using serially measured waning antibody concentration data obtained in a prospective cohort study of 673 healthcare providers vaccinated with two doses of BNT162b2 vaccine. The datasets of 165 healthcare providers and 292 elderly patients with or without hemodialysis were used for external validation. Internal validation of the model demonstrated 97.0% accuracy, and external validation of the datasets of healthcare workers, hemodialysis patients, and nondialysis patients demonstrated 98.2%, 83.3%, and 83.8% accuracy, respectively. The internal and external validations demonstrated that this model also fits the data of various populations with or without underlying illnesses. Furthermore, using this model, we developed a smart device application that can rapidly calculate the timing of negative seroconversion.

4.
Eur J Pediatr ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2246601

ABSTRACT

We aimed to investigate the type and frequency of adverse events over 7 days following the first and second BNT162b2 vaccination. This observational and historical cohort study included patients aged 5-11 years who received two doses of BNT162b2 and provided consent along with their guardians. We collected data on sex, age, height, weight, blood type, history of Bacille Calmette-Guerin vaccination, allergic disease, medication, history of coronavirus disease 2019 (COVID-19), and adverse reactions 7 days following the first and second BNT162b2 vaccination using a questionnaire. Our results were compared with previously reported results for individuals aged 12-15 years. A total of 421 participants were eligible for this study. Among the 216 patients with allergic disease, 48 (22.2%) had experienced worsening of their chronic diseases, and the frequency of fatigue and dizziness after the second dose was higher than that of healthy individuals. The experience of systemic adverse reactions was associated with asthma. The frequency of headache, diarrhea, fatigue, muscle/joint pain, and fever after the second BNT162b2 vaccination was lower in individuals aged 5-11 years than in those aged 12-15 years. Fever was the only systemic adverse reaction that lasted longer than 5 days (1.0% of participants). CONCLUSIONS: Individuals with allergic diseases, who are potentially susceptible to COVID-19, may experience worsening of their chronic diseases and more frequent adverse reactions after BNT162b2 vaccination than healthy individuals. To ensure that children with allergic diseases receive the vaccine safely, further information needs to be collected. WHAT IS KNOWN: • Adverse reactions after BNT162b2 vaccination among individuals aged 5-11 years are generally nonserious, more common after second vaccination, and substantially less common compared to those observed among individuals aged 12-15 years. WHAT IS NEW: • Individuals with allergic diseases experienced worsening of their chronic diseases and more frequent adverse reactions after BNT162b2 vaccination than healthy individuals. • Systemic adverse reactions were associated with asthma. Fever was the only systemic adverse reaction that lasted longer than 5 days.

5.
Vaccine ; 41(9): 1545-1549, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2221467

ABSTRACT

Longitudinal data on the immune response from the first dose to several months after the third dose of COVID-19 vaccine are limited. We analyzed the immune response in 406 Japanese healthcare workers who received at least three doses of vaccine. The geometric mean anti-receptor binding domain IgG antibody titers and antigen-stimulated T-cell interferon-gamma levels after 6 months after receiving a third dose were similar to those 8 weeks after receiving a second dose. Humoral and cellular immunity induced by the third dose was more durable than that induced by the second dose. UMIN Clinical Trials Registry ID: UMIN000043340.


Subject(s)
BNT162 Vaccine , COVID-19 , Immunity, Cellular , Immunity, Humoral , Humans , Antibodies, Viral , BNT162 Vaccine/immunology , COVID-19/prevention & control , East Asian People , Health Personnel
6.
Vaccines (Basel) ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2217099

ABSTRACT

Intensive vaccination is recommended for populations more vulnerable to COVID-19 infection, although data regarding the built of immunity after vaccination for dialysis patients are lacking. This prospective, observational cohort study of maintenance hemodialysis patients examined IgG antibody levels against the SARS-CoV-2 spike (S1) protein, neutralizing activity, and interferon gamma levels after the third dose of the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine. Humoral immunity was repeatedly measured for up to two months. The study includes 58 patients on hemodialysis. Median neutralizing antibodies reached a maximum at 56 and 9 days after booster vaccination with BNT162b2 and mRNA-1273, respectively. The median IgG antibody titer reached a maximum of 3104.38 and 7209.13 AU/mL after 16 days of booster dose, and cellular immunity was positive in 61.9% and 100% of patients with BNT162b2 and mRNA-1273 vaccination, respectively. By repeating the measurements over a period of two months, we clarified the chronological aspects of the acquisition of humoral immunity in dialysis patients after a booster COVID-19 vaccination; most dialysis patients acquired not only humoral immunity, but also cellular immunity against SARS-CoV-2. Future research should investigate the continued long-term dynamics of antibody titers and cellular immunity after the third or further vaccinations, evaluating the need for additional vaccinations for hemodialysis patients.

7.
Eur J Immunol ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2127680

ABSTRACT

Memory T cell responses have been analyzed only in small cohorts of COVID-19 vaccines. Herein, we aimed to assess anti-SARS-CoV-2 cellular immunity in a large cohort using QuantiFERON assays, which are IFN-γ release assays (IGRAs) based on short-term whole blood culture. The study included 571 individuals receiving the viral spike (S) protein-expressing BNT162b2 mRNA vaccine. QuantiFERON assays revealed antigen-specific IFN-γ production in most individuals 8 weeks after the second dose. Simultaneous flow cytometric assays to detect T cells expressing activation-induced markers (AIMs) performed for 28 randomly selected individuals provided data correlating with the QuantiFERON data. Simultaneous IFN-γ enzyme-linked immunospot and AIM assays for another subset of 31 individuals, based on short-term peripheral blood mononuclear cell culture, also indicated a correlation between IFN-γ production and AIM positivity. These observations indicated the acquisition of T cell memory responses and supported the usability of IGRAs to assess cellular immunity. The QuantiFERON results were weakly correlated with serum IgG titers against the receptor-binding domain of the S protein and were associated with pre-vaccination infection and adverse reactions after the second dose. The present study revealed cellular immunity after COVID-19 vaccination, providing insights into the effects and adverse reactions of vaccination.

8.
J Immunol ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2080591

ABSTRACT

Although the immunological memory produced by BNT162b2 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been well studied and established, further information using different racial cohorts is necessary to understand the overall immunological response to vaccination. We evaluated memory B and T cell responses to the severe acute respiratory syndrome coronavirus 2 spike protein before and after the third booster using a Japanese cohort. Although the Ab titer against the spike receptor-binding domain (RBD) decreased significantly 8 mo after the second vaccination, the number of memory B cells continued to increase, whereas the number of memory T cells decreased slowly. Memory B and T cells from unvaccinated infected patients showed similar kinetics. After the third vaccination, the Ab titer increased to the level of the second vaccination, and memory B cells increased at significantly higher levels before the booster, whereas memory T cells recovered close to the second vaccination levels. In memory T cells, the frequency of CXCR5+CXCR3+CCR6- circulating follicular Th1 was positively correlated with RBD-specific Ab-secreting B cells. For the response to variant RBDs, although 60-80% of memory B cells could bind to the omicron RBD, their avidity was low, whereas memory T cells show an equal response to the omicron spike. Thus, the persistent presence of memory B and T cells will quickly upregulate Ab production and T cell responses after omicron strain infection, which prevents severe illness and death due to coronavirus disease 2019.

9.
Vaccine ; 40(32): 4538-4543, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1895479

ABSTRACT

BACKGROUND: The antibody titer is known to wane within months after receiving two doses of the Pfizer-BioNTech BNT162b2 mRNA SARS-CoV-2 vaccine. However, knowledge of the cellular immune response dynamics following vaccination is limited. This study to aimed to determine antibody and cellular immune responses following vaccination, and the incidence and determinants of breakthrough infection. METHODS: This prospective cohort study a 6-month follow-up period was conducted among Japanese healthcare workers. All participants received two doses of BNT162b2 vaccine. Anti-SARS-CoV-2 antibody titers and T-cell immune responses were measured in serum samples collected at several timepoints before and after vaccination. RESULTS: A total of 608 participants were included in the analysis. Antibody titers were elevated 3 weeks after vaccination and waned over the remainder of the study period. T-cell immune responses showed similar dynamics. Six participants without predisposing medical conditions seroconverted from negative to positive on the IgG assay for nucleocapsid proteins, indicating breakthrough SARS-CoV-2 infection. Five of the six breakthrough infections were asymptomatic. CONCLUSIONS: Both humoral and cellular immunity waned within 6 months after BNT162b2 vaccination. The incidence of asymptomatic breakthrough infection within 6 months after vaccination was approximately one percent. UMIN CLINICAL TRIALS REGISTRY ID: UMIN000043340.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Immunity, Cellular , Japan , Prospective Studies , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
10.
Vaccine ; 40(13): 1928-1931, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1757909

ABSTRACT

The reduced vaccine efficacy against the SARS-CoV-2 variant lineage B. 1.351 (beta variant) containing the E484K and N501Y mutations is well known. The E484K mutation in SARS-CoV-2 is thought to be responsible for weakened humoral immunity. Vaccine efficacy against the R.1 lineage, which contains the E484K mutation but not the N501Y mutation, is uncertain. Serum samples were collected from 100 healthy Japanese participants three weeks after receiving the second dose of the BNT162b2 vaccine, and serum neutralization antibody titers were measured against five SARS-CoV-2 variants. The geometric mean neutralization titers measured for the original and R.1 lineages were equivalent (91.90 ± 2.40 and 102.67 ± 2.28, respectively), whereas a low titer was measured for the beta variant (18.03 ± 1.92). Although further investigations with other variant strains and serum samples are essential, our results imply that the weakened humoral response is not caused solely by the E484K mutation. (UMIN000043340).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Vaccine ; 40(7): 1019-1025, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1612091

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination has started worldwide, including Japan. Although high rates of vaccine response and adverse reactions of BNT162b2 vaccine have been reported, knowledge about the relationship between sex differences and antibody response is limited. Furthermore, it is uncertain whether adverse reactions are associated with the vaccine response. METHODS: This prospective observational study included 673 Japanese participants working in a medical school and its affiliated hospital in Tokyo, Japan (UMIN000043340). Serum samples were collected before the first dose and three weeks after the second dose of BNT162b2 vaccine, and antibody titers against the receptor-binding domain of the spike protein of SARS-CoV-2 were measured. Answers to questionnaires about background characteristics and adverse reactions were obtained at the time of sample collection, and the relationship between antibody titers was analyzed. RESULTS: After excluding participants who did not complete receiving two doses of vaccination or two series of serum sample collection, 646 participants were analyzed. Although all participants became sero-positive after vaccination, antibody titers were highly variable among individuals (260.9-57,399.7A U/mL), with a median titer of 13478.0AU/mL. Mean titer was higher in females than in males and higher in young (≤45 years old) participants than in aged (>45 years old) participants. Participants who experienced adverse reactions demonstrated a higher antibody titer after vaccination than those without adverse reactions. Multivariable analysis demonstrated that young age, female sex, and adverse reactions after the second dose were independently related to higher antibody titers after the second dose. DISCUSSION: A favorable antibody response was observed after two doses of BNT162b2 vaccination among mostly healthy Japanese participants, especially among female and young participants. Although further investigation is essential, our results imply that the systemic adverse reactions (i.e., fever and general fatigue) are associated with a higher antibody response that indicates the acquisition of humoral immunity.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , COVID-19 Vaccines , Female , Health Personnel , Humans , Japan , Male , Middle Aged , RNA, Messenger , SARS-CoV-2 , Universities , Vaccination
12.
Int Immunopharmacol ; 103: 108491, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587489

ABSTRACT

To better understand the immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with COVID-19, it is important to investigate the kinetics of the antibody responses and their associations with the clinical course in different populations, since there seem to be considerable differences between Western and Asian populations in the clinical features and spread of COVID-19. In this study, we serially measured the serum titers of IgM, IgG and IgA antibodies generated against the nucleocapsid protein (NCP), S1 subunit of the spike protein (S1), and receptor-binding domain in the S1 subunit (RBD) of SARS-CoV-2 in Japanese individuals with COVID-19. Among the IgM, IgG, and IgA antibodies, IgA antibodies against all of the aforementioned viral proteins were the first to appear after the infection, and IgG and/or IgA seroconversion often preceded IgM seroconversion. In regard to the timeline of the antibody responses to the different viral proteins (NCP, S1 and RBD), IgA against NCP appeared than IgA against S1 or RBD, while IgM and IgG against S1 appeared earlier than IgM/IgG against NCP or RBD. The IgG responses to all three viral proteins and responses of all three antibody classes to S1 and RBD were sustained for longer durations than the IgA/IgM responses to all three viral proteins and responses of all three antibody classes to NCP, respectively. The seroconversion of IgA against NCP occurred later and less frequently in patients with mild COVID-19. These results suggest possible differences in the antibody responses to SARS-CoV-2 antigens between the Japanese and Western populations.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2 , Antibody Formation , Asian People , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Japan/epidemiology , Japan/ethnology , Seroconversion , Viral Proteins/immunology
13.
Ann Clin Biochem ; 58(4): 368-376, 2021 07.
Article in English | MEDLINE | ID: covidwho-1175245

ABSTRACT

BACKGROUND: Quantitative antibody tests are expected to be useful in diagnostics of COVID-19 and investigation of herd immunity against SARS-CoV-2. To make it proper to perform them, understanding of the immunological aspects is critically important. The present study aimed to assess humoral responses in COVID-19 using various quantitative antibody tests. METHODS: Four quantitative antibody tests that are different in targeted antigens, detectable immunoglobulin classes and avidity were used. Diagnosis was confirmed by RT-PCR for SARS-CoV-2 detection. Antibody titres of 117 samples collected from 24 COVID-19 patients and 23 non-COVID-19 patients were measured to evaluate correlations between different tests. For 24 COVID-19 patients, antibody titres measured at various time points after the onset or the RT-PCR diagnosis were subjected to assessment of humoral responses. RESULTS: Correlations between tests were observed to some degree, although there were discrepancies putatively due to differences in measurement principle. Seronegative COVID-19 was diagnosed for some patients, in whom antibody titres were less than the cut-off value in each test throughout the time courses. IgG seroconversion without prior IgM seroconversion most frequently occurred, while predominance of IgM responses over IgG responses was observed in some severe cases. Viral burdens estimated according to threshold cycle values at the RT-PCR seemed to impact antibody responses. CONCLUSIONS: The results provide insights into the nature of humoral responses to SARS-CoV-2 and diagnostic performance of antibody tests.


Subject(s)
Antibodies, Viral , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19 , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
14.
Ann Clin Biochem ; 58(3): 174-180, 2021 May.
Article in English | MEDLINE | ID: covidwho-1015761

ABSTRACT

BACKGROUND: The usability of laboratory tests related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critically important for the world undergoing the COVID-19 pandemic. The present study aimed to assess the diagnostic usability of rapid tests for the detection of antibody against SARS-CoV-2 through comparison of their results with the results of reverse transcription polymerase chain reaction (RT-PCR) test for the detection of SARS-CoV-2 genomic RNA and with the results of a quantitative test for antibody detection. METHODS: Serum samples were collected from 18 patients undergoing RT-PCR testing for SARS-CoV-2. Twelve patients were RT-PCR positive while six were negative. A quantitative test based on chemiluminescent immunoassay and three rapid tests based on immunochromatography were performed to detect anti-SARS-CoV-2 IgG and IgM. RESULTS: All the antibody tests exhibited poor sensitivity at the timing of initial RT-PCR diagnosis. IgG responses occurring prior to or simultaneously with IgM responses were observed through not only the quantitative test but also the three rapid tests. Based on concordance with the quantitative test results, the large variance among the three rapid tests was revealed. CONCLUSIONS: All antibody tests were unsatisfactory to replace RT-PCR for the early diagnosis of COVID-19. Rapid antibody tests as well as a quantitative antibody test were useful in the assessment of immune responses in COVID-19. The obvious variance among the three rapid tests suggested limited accuracy and difficult standardization. Diagnostic usability of rapid antibody tests for COVID-19 should be investigated rigorously.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/blood , SARS-CoV-2/metabolism , Adult , Aged , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL